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ABSTRACT 

The distributed cognition approach, and by extension the domain of social intelligence design, 
attempts to integrate three until recently separate realms: mind, society, and matter. The field offers 
a heterogeneous collection of ideas, observations, and case studies, yet lacks a solid, coherent 
theoretical framework for building models of concrete systems and processes. Despite the intrinsic 
complexity of integrating individual, social and technologically-supported intelligence, the paper 
proposes a relatively simple  "connectionist" framework for conceptualizing a distributed cognitive 
system. This framework represents shared information sources (documents) as nodes connected by 
links or associations of variable strength. The link strength increases interactively with the number 
of “co-activations” or co-occurrences of documents in the patterns of their usage. This 
connectionist learning procedure captures the implicit knowledge of its community of users and 
uses it to help them find relevant information, thus supporting an unconscious form of exchange. 
The principles are illustrated by an envisaged application to a concrete problem domain: the 
dynamic sharing of design knowledge among a multitude of architects by means of a database of 
associatively connected building projects. 
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1. A GENERAL PERSPECTIVE ON SOCIAL INTELLIGENCE DESIGN 

Social intelligence design is one of an emerging cluster of approaches, originating in different 
disciplines and application domains, that attempt to bring together three until recently separate 
realms: mind (cognition, intelligence), society (social interaction, organizations, institutions), and 
matter (objects, tools, technologies). Related approaches go under the names of distributed 
cognition [Hutchins, 1995], situated and embodied cognition [Susi & Ziemke, 2003], activity 
theory [Hasan et al., 1998], social construction of knowledge [Berger & Luckmann, 1967], 
extended mind [Clark, 1995], and collective intelligence [Levy, 1997; Heylighen, 1999]. What they 
all have in common is that they extend the cognitive processes that characterize learning, memory 
and intelligence outward: from the individual brain to the surrounding social and physical 
environment.  

One dimension of extension is the collectivity or social system formed by individual minds 
interacting. It is a commonplace that most of our knowledge, concepts, and problem-solving 
procedures develop in interaction with others, and that an individual cut-off from society (e.g. a 
child raised by wolves) would be virtually powerless to comprehend our complex environment—if 
capable of surviving at all. Thus, we can understand these higher forms of cognition only at the 



social level, as aspects of a collective intelligence emerging from the interactions between a 
multitude of individuals. 

More recently, the awareness has been growing that cognitive processes moreover heavily rely 
on structures in the physical environment, i.e. on various forms of symbols, tools, and spatial 
arrangements [Kirsh & Maglio, 1994]. These structures, exemplified by items such as scribbled 
notes, traffic signs, file cabinets, and computers, are used to store, process, communicate or 
organize information, thus reducing the burden on our limited mental capacities. Since most of 
these structures have been consciously designed for that purpose, we may call them information 
technologies.  

However, this should not mislead us to immediately think in terms of digital computers or 
electronic networks. When a shepherd puts pebbles in a bag to count his sheep or drops them along 
the path to remember where he has passed, he is using a cognitive artefact just as much as if he 
were calculating with a palmtop computer or determining his location with GPS. In both cases, he 
is manipulating his physical environment so that it can hold information, thus augmenting his 
interior capacity. Similarly, an architect who designs a building so that major features such as exits 
or bathrooms are easy to find is creating an information structure intended to minimize the 
cognitive load on its users. For an even more vivid example of the need for external structure to 
support cognition, imagine a household in which all individual items, such as cooking utensils, 
clothes, cleaning products, cans with food, books, pens, etc. would be distributed in a completely 
random order over the different cupboards, drawers and shelves of the house: since our brain would 
never be able to memorize all their locations, these items would effectively become irretrievable 
and thus useless. 

The social and material dimensions of extended cognition are inextricably linked. Exchanging 
information with others necessarily entails a shared physical medium. In the simplest case, this is 
just the air that carries the sounds of our speech. But as soon as the information becomes too 
complex to be easily remembered, we begin using more structured media, such as paper, computer 
discs or spatial arrangements, which can accurately register and shape the information being shared 
so as to facilitate reuse. In the "random distribution" example above, even if after years of diligent 
training we had come to memorize the locations of all household items, we would never be able to 
communicate this knowledge to another person. A "common sense arrangement" (e.g. clothes 
together in the wardrobe, cleaning products under the kitchen sink), on the other hand, would 
merely need a few general indications to be used by others. 

This brings us to the perspective of distributed cognition: to understand complex information 
processes, we must consider the distributed organization constituted by different individuals with 
different forms of knowledge and experience, the social network that links them together, and the 
artefacts, media or information technologies that support their individual thought and 
interindividual communication. A classic example of this approach can be found in the work of 
Hutchins, who used ethnographic methods to study a Navy warship as a distributed cognit ive 
system, examining in detail how its navigation depends on the cognitive activity of many people 
coordinated by means of various instruments, ship navigation manuals, specialized communication 
channels, formal and informal procedures [Hutchins, 1995]. 

The distributed cognition approach, and by extension the domain of social intelligence design, 
as yet offers little more than a heterogeneous collection of ideas, observations, and case studies. It 
lacks a coherent theoretical framework that would provide a solid foundation for building models 
of concrete systems and processes [Heylighen et al. , 2004b; Susi & Ziemke, 2001]. In spite of the 
intrinsic complexity of the problem of integrating individual, social and artefact-supported 
intelligence, we believe that a few well-chosen concepts and methods can help make the issue 
much more tractable, offering a relatively simple paradigm to conceptualize a distributed cognitive 
system. In the remainder of this paper, we will first briefly sketch our "connectionist" conceptual 
framework, and then describe in more detail its envisaged application to a concrete problem 



domain: the dynamic sharing of design knowledge among a multitude of architects by means of a 
database of associatively connected building projects. The paper closes by situating our approach in 
the context of related research and outlining directions for future work. 

2. A CONNECTIONIST PERSPECTIVE ON DISTRIBUTED COGNITION 

The essence of connectionism is to model cognitive systems as networks of nodes connected by 
(typically weighted and directed) associations or links. This static representation is complemented 
by dynamic rules that govern the short-term interaction between the nodes, and the long-term effect 
this has on the links. This connectionist perspective is inspired by the organization of the brain, 
where neurons play the role of nodes, synapses the role of links, and interaction occurs by the 
transmission of electrical activation from neuron to neuron, with a strength proportional to the 
"conductivity" of the connecting synapse. This conductivity is adjusted according to the simple 
principle that successfully used links grow stronger, while unsuccessfully used ones weaken, thus 
continuously improving the overall "success rate" or efficiency of the network. This can be 
formalized most simply by the Hebbian rule, which states that the increase in strength of a link is 
proportional to the strength of the co-activation (product of activations) of the nodes it connects 
[Heylighen & Bollen, 2002]. Each experience of use thus leaves a trace in the linking pattern. The 
network therefore functions as a self-organizing, dynamic memory, which becomes an increasingly 
reliable guide for dealing successfully with situations similar to those experienced in the past.  

 While this is of course a gross simplification of the actual processes in the brain, research 
on artificial neural networks has shown that this approach allows us to successfully model most 
fundamental cognitive processes [McLeod et al., 1998]. The advantage of the relative abstractness 
and simplicity of this connectionist representation is that we can easily extend it to systems that do 
not consist of actual brain tissue. In particular, we propose to extend it to distributed cognitive 
systems that consist of human individuals and physical information sources ("documents"), linked 
by communication channels.   

 For the sake of simplicity, we will focus in this paper on the mechanisms of distributed 
memory, learning and information retrieval, assuming that more complex processing either takes 
place in individuals or emerges from the collective dynamics of the network (see [Heylighen et al., 
2004b] for a somewhat more in-depth look at these emergent processes).  We further assume that 
all individuals have in principle read/write access to all documents (information sources). Thus, the 
documents play the role of a shared memory, through which individuals can exchange information, 
access, and contribute to, the whole of their collective knowledge [Heylighen, 1999]. The network 
of linked documents thus constitutes a medium for indirect cognitive collaboration between its 
users. (The connectionist perspective can also be used to model the direct communication between 
socially or technologically linked individuals, but since our research on this topic is still very 
preliminary [Van Overwalle et al., 2004; Heylighen et al., 2004b], we will limit ourselves here to 
document-mediated forms of distributed cognition.). 

 Given the present information explosion, documents can easily number in the millions (or 
even billions if you consider the present web). As the example of household items illustrates, to 
make this memory in any way usable, we need an intuitive ordering that makes sense to all users. 
E.g. although an individual could easily memorize that the cleaning products are stored in the 
wardrobe, and the trousers under the kitchen sink, most people would look for the trousers in the 
wardrobe, and vice-versa. But for an ever growing collection of novel and abstract data, there are 
no such conventional location schemes, like wardrobes or kitchen sinks. We need to develop a 
collective mental map [Heylighen, 1999], that indicates the relative locations of all documents, and 
that constantly adapts to changes in the information content or user preferences.  



 The basic advantage of the connectionist model is that it allows us to have such a mental 
map self-organize. We simply represent each document by a node, and then determine the strength 
of the link between two nodes depending on the degree to which they are mutually relevant or 
associated. The location of a node is then determined by its "surroundings", i.e. the nodes it is most 
strongly linked with. To retrieve a document, you start from the already known document that is 
most associated with it, and then move "upstream", each time selecting the link that seems most 
strongly associated with the target. This is how people navigate through hypertext networks 
[Bollen, 2001]. The effectiveness of the strategy depends on how well the actual hyperlinks reflect 
the users' intuitive associations. And this depends on how well the collective mental map 
represented by the linking patterns captures the collective knowledge of its users. The Hebbian 
learning rule sketched above allows the network to assimilate the knowledge implicit in how the 
network is being used [Heylighen & Bollen, 2002]. We simply assume that two documents A and 
B are co-activated if they are consulted by the same user within a relatively short time interval. 
This indicates that B is likely to be relevant for A, and that it is worth strengthening the link A à 
B. The next time a user consults A, B will be easier to reach, thus reducing the burden of searching 
for relevant documents. In that way, the network continuously adapts to better reflect the intuitive 
expectations of the users collectively. 

 Co-activation, in the sense of being consulted (nearly) simultaneously, can be generalized 
to functional co-occurrence: appearing in the same category of usage. Some examples of functional 
categories in which documents may co-occur: being cited in the same paper, being bought by the 
same customer, being present in the same library section, having the same author, having the same 
keyword in the title, sharing specific features such as document type or subject... Some of these 
data are already being used to find related documents, e.g. co-citation to locate scientific papers on 
the same subject, or co-purchase to recommend relevant books to customers of web bookshops. 
(This is a form of "collaborative filtering" [Shardanand & Maes, 1995].) In our generalized 
connectionist model, all these co-occurrence data are potentially useful to indicate associations 
between documents, i.e. to efficiently structure the collective mental map and thus to facilitate 
collective information retrieval and exchange. Combining all data available should improve the 
quality of the associations, especially in the beginning stages when the network has not yet had 
much time to "learn" from the way it is being used.  

The only problem is to determine the relative importance of the different contributions: is 
having the same author a better or worse indication of mutual relevance than being bought by the 
same customer, or having the same keyword? A possible solution would be to consider the degree 
of association implied by each type of co-occurrence as a variable, and then to calculate the 
correlation coefficients between all these variables over the whole collection of documents. 
Applying the statistical technique of factor analysis to the matrix of cross-correlations, we can then 
compute a "principal component". This is a linear combination of all variables that maximally co-
varies with each of them. The load of a variable on this "principal" dimension can then be 
interpreted as an indication of its importance for the overall calculation of associative strength. Co-
occurrence variables that correlate poorly with the others will have low loads, implying that they 
are unreliable indicators of relevance.  

In conclusion, our connectionist approach is able to intuitively structure any—even random—
collection of documents, first by aggregating the various features that two documents share (co-
occurrence) to determine their initial degree of association or “distance” in the collective mental 
map. This network of associations is then continuously improved, updated and fine-tuned by letting 
it learn from the actual way it  is used by its community of users. This makes it much easier for the 
users to find the documents they are interested in, in addition to providing a global ordering for the 
collection that allows various more complex forms of use, such as categorizing documents by 
means of cluster analysis, finding the most relevant documents with particular features, producing 
tailor-made, context-dependent recommendations for individual users, and discovering global 



trends [Heylighen & Bollen, 2002]. The method relies on an implicit, technology-mediated 
collaboration between the different users, which does not demand any effort from them except the 
one they have to invest anyway to use the network purely for their individual sake.  

3. A CONCRETE APPLICATION 

Having sketched our connectionist framework to conceptualize a distributed cognitive system, this 
section switches attention to a concrete application of this framework in the domain of architecture. 
In this domain, design ideas are developed as much through interaction as by individuals in 
isolation. This observation inspired the development of a Dynamic Architectural Memory On-line 
(DYNAMO), an interactive platform to share ideas, knowledge and insights in the form of concrete 
building projects among architects/designers in different contexts and at different levels of 
expertise.  

Interaction with professional and student architects revealed this platform to suffer from at least 
two thresholds. First of all, making projects available  to other platform users takes time, effort, and 
specific skills. Secondly, architects tend to sense a psychological threshold to share their ideas and 
insights with others. This section points out how the framework outlined above, and in particular 
the notion of co-occurrence can be instrumental in addressing both thresholds. Equipping 
DYNAMO with a self-organizing mental map that reflects the relative locations of all its projects, 
and that constantly adapts to changes in its content or user preferences, would enable the platform 
to benefit from its users’ insights without any extra effort or even awareness on their part.  

In the subsections which follow the basic concepts of DYNAMO are presented, followed by 
their implementation and results from experiments with various user groups. Based on this 
foundation, we point out the power of the connectionist framework to help the platform effectively  
fulfill its original ambition.  

3.1 DYNAMO in a nutshell 

DYNAMO is a web-based design assistant for students and professional designers in the field of 
architecture [Heylighen & Neuckermans, 2000]. DYNAMO aims to incorporate quite literally the 
view of cognition underlying Case-Based Design (CBD) and at the same time to extrapolate it 
beyond the individual.  

Firmly rooted in the Theory of Dynamic Memory [Schank, 1982], the CBD approach propounds 
that people’s knowledge does not only consist of abstract, generally applicable principles, but also 
of specific experiences, so-called cases [Riesbeck & Schank, 1989; Kolodner 1993]. Moreover, it 
claims that human memory is dynamically changing with every new experience. Several years of 
observing and analyzing people’s remindings have nurtured the hypothesis that experiencing, 
understanding, remembering and learning cannot be separated from one another. Our 
understanding grows by trying to integrate new things with what we already know. As a result, 
understanding causes us to come across old experiences as we process new ones. A significant 
side-effect of this process of understanding is that memory never behaves exactly the same way 
twice, since it changes as a result of its own experiences. As experiences are recalled and used, 
memory gets an opportunity to try out the knowledge associated with them. This allows memory to 
re-organize and re-define itself dynamically, in other words to learn from its experiences 
[Kolodner, 1993].  

Learning from experience can occur in different ways [Riesbeck & Schank, 1989]. New 
episodes are stored in terms of old expectations generated by previous experiences. Eventually 
expectations that used to work may have to be invalidated. Indices to unique experiences that were 
once useful will cease to do so because similar experiences have been encountered. In short, 



memory learns from experience by acquiring new cases, grouping similar cases, or re-indexing 
cases stored improperly at first. 

Inspired by the cognitive model underlying CBD, DYNAMO is conceived as an (inter)active 
workhouse rather than a passive warehouse. It actively develops and is interactively developed by 
architects’ design knowledge, by stimulating and supporting several modes of interaction (see 
Figure 1): 

1. interaction among building projects, for projects are labeled and linked to related 
projects by various features architects address during design; 

2. interaction between (human) designer and (computer) memory, for users cannot only 
consult projects in DYNAMO, they can improve its content in various ways; 

3. interaction among individual designers in different contexts and at different levels of 
expertise, for DYNAMO is meant for collective use by students in architecture schools 
and professionals in design firms; 

4. and thus also interaction between practice and education in architectural design. 
 

 
Figure 1: DYNAMO stimulates and supports several modes of interaction. 

3.2 Implementation  

From a technical point of view, DYNAMO can be thought of as a learning content management 
system. The platform is designed to support the creation, storage, use and reuse of learning content 
in the granular form of building projects (see Figure 2). All learning content is organized by means 
of a dynamic metadata classification system and stored in a data repository embodied by a 
relational database, which is subdivided into four sub-databases as follows (see Figure 3): 

The cases database labels every building project by various features: the project name, architect 
and location, but also aspects of form and space, function, construction and context. These 
metadata serve as filter criteria during retrieval and as links to projects with analogous 
characteristics. In order to avoid confusion, a clear distinction should be made between categories 
and values. The term category refers to the name of an index, e.g. spatial configuration. Each 
category provides a place for a project to characterize itself with one or more values, e.g. cluster, 
linear, radial, ‘plan libre’. A value thus refers to the concrete realization of a category for a certain 
project. It characterizes a specific project but can, and in many cases will be the same for several 
projects. In other words, whereas categories are chosen generally and shared by all projects, the 
values for these categories are assigned to each case specifically. For some categories, materials for 
instance, a single project can have multiple values.  

The files database contains all information about the files documenting the projects (file name, 
author, source, file type, etc). Projects can be documented with a combination of various media, 
ranging from sketches and drawings, over digital models and animation, to pictures, video and text. 
The advantages of this combination are manifold. Compared to written data, visual and spatial  



 
Figure 2: DYNAMO’s content and user interface are organized around concrete building projects. 

 
representations better fit the architect’s designerly way of thinking and working [Cross, 1982]. 
Furthermore, mixing multiple modes of representation provides users with a richer learning 
experience [Vora & Helander, 1997], which results in a better understanding of the project. 

The log base keeps a log of all user interactions with the platform. For every user (inter)action, 
the log base stores parameters such as the identity of the user (user name), the location of the page 
that registered the action, the query string used during the action (which typically contains 
variables such as the project and/or file id), the date and time the action was performed, the client 
ip address, and the type of action performed (check file, delete file, delete project, dele te value, 
logon, recheck  file, save file, search, view file, view project).  
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Figure 3: Schematic overview of DYNAMO’s implementation. As we write, DYNAMO represents 536 

projects, 7032 files, 1911 keywords (index values), 713 registered users, and 85126 logs. 

 



The logon database takes care of user privileges and administration. The current version of 
DYNAMO distinguishes between three types of users. DYNAMO users have limited privileges: 
they can consult the platform, feed it with new projects, project features and documentation, and 
create new categories. Monitors have extended privileges in that they can approve, alter or delete 
user-added materials. Administrators have access to all DYNAMO features, including user and 
monitor administration.  

3.3 Use 

DYNAMO is being used and developed by various groups and individuals in architecture schools, 
and provides an emerging knowledge pool for design practice. As such, DYNAMO holds great 
potential to become a distributed cognitive system for student and professional designers in 
architecture. The question to what extent this potential is effectively exploited, motivated a series 
of experiments to assess the added value of the platform in supporting architectural practice and 
education. 

This longitudinal study has been reported more fully elsewhere [Heylighen et al., 2004a] and 
only the findings relevant in the context of this paper are described here. To give a little 
background: the study monitored and analyzed various user groups (students and practitioners, both 
novice and expert designers) while using the platform in solving concrete design tasks. To this end, 
a variety of data was drawn on, including think aloud protocols, surveys and log files. 

Protocol analysis revealed some interesting differences between novice and expert designers. 
While novices tend to scan DYNAMO for inspiration on interesting concepts, experts rather try to 
project their own concepts onto the projects available in the platform. In a comparative study by 
Stiers and van Beuningen [2002], the novice under consideration did not consult DYNAMO 
because he was looking for anything in particular, but to get inspired by concepts in other projects. 
By contrast, the expert explicitly looked for concepts related to his design ideas. His search was 
more structured in that he tried to match his own concepts with those in the project collection. This 
seems to suggest that novice and expert designers make different associations between projects: 
novices tend to rely, primarily, on superficial similarities (e.g. the function) between the design task 
at hand and projects in DYNAMO, hoping that the latter will provide useful concepts for their task; 
experts, for their part, seem to draw more insightful parallels (e.g. the underlying concept or spatial 
organization) between projects that may look quite different at first sight.  

The study also revealed several obstacles that prevent DYNAMO from being used as originally 
intended. Worth mentioning here are the obstacles encountered in establishing a community of 
users who exchange and learn from each other’s insights and experiences. In principle, we expected 
users to consult DYNAMO’s project collection, but also to (inter)actively participate in feeding it, 
be it by adding, supplementing, connecting or commenting on projects. Yet, apart from students 
submitting an obligatory project analysis, hardly any user so far exploited the opportunities for 
(inter)action. Perhaps a good term to characterize this pattern of use is ‘free-ridership’ [Agre, 
2003]: users who do not participate in contributing to developing DYNAMO’s content nonetheless 
benefit from it.  

One reason for this ‘free-ridership’ may relate to the submission procedure, which users seemed 
to find rather complex at first. In general, making material available to others takes time, effort, and 
sometimes specific skills [Van House, 2003]. Especially the articulation of appropriate metadata, 
which are key to identifying inter-project relationships, is far from trivial a task. Moreover, making 
material available seems inconsistent with the habits and priorities in architectural practice. 
Professional architects turned out to be highly skeptic about sharing information on their own 
projects with other platform users, anxious to give away the secret of their success. If practitioners 
are not willing to share their knowledge, insights, and expertise, this may become a heavy burden 
on DYNAMO’s future. 



3.4 Towards self-organization  

In the light of the connectionist model, however, this ‘free-ridership’ does not need to be as 
problematic as first meets the eye. According to this model, DYNAMO can be thought of as a 
collective mental map in which the meaning of a single project is defined by the whole of its 
associations with other projects rather than by its independent content. In other words, projects can 
be considered as nodes in an associative network and the strength of the links between them as the 
degree to which they are mutually relevant or associated.  

At this point, these links are determined by the projects’ characteristics, i.e. by the metadata 
explicitly specified by users. As a result, functional co-occurrence among projects is necessarily 
limited to having the same value for one or more categories, such as being designed by the same 
architect, using the same material, being built in the same location or period, having the same 
function, and the like. Moreover, once these values have been specified, the degree of association 
between two projects stays the same, and may alter only when a user explicitly creates a new 
category.  

Following the framework outlined above, however, this collective mental map may be 
considerably enriched by exploiting the various modes of interaction DYNAMO aims to stimulate 
and support. So far, we have mentioned, interaction remains a quite limited phenomenon, in the 
sense that most users of the platform act as ‘free-riders’. In a slightly different sense, however, 
there is in fact a lot of interaction—between different projects and between user and platform—that 
currently remains implicit, yet holds great potential to determine the degree of association between 
projects in a more sophisticated and dynamic way. 

A first possibility would be to determine this degree by taking into account not only those 
features of a project that are explicitly specified as category values, but also features that are 
contained in the files documenting that project. For instance, while the user submitting the project 
‘s Hertogenmolens in Aarschot (Belgium) may forget (or fail) to label it explicitly as making use of 
corten steel, a journal article documenting this project is likely to mention this material, as it plays 
an instrumental role in realizing Noa architects’ design concept. (Along the same line, one could 
even think of distilling numerical information out of digital models, or using image recognition 
techniques to derive visual features from pictures or drawings.)  

In addition to features extracted from files that document projects, DYNAMO could exploit 
information on how users actually interact with projects, as each user (inter)action is automatically 
recorded by the log base. By analyzing the records of each project consultation, the degree of 
association between projects could be computed on the basis of relations such as being consulted 
by the same user or being consulted within the same time slot [Heylighen & Bollen, 2002]. Also, if 
any documents related to the projects are requested, one could derive the user’s relative measure of 
interest in each project by counting the number of requested files or the total time spent on the 
project, and this interest gives a direct indication of the degree of “activation” to be accorded in a 
connectionist model [Heylighen & Bollen, 2002; Heylighen, 1999]. 

Added together, these various forms of association between projects form determine an overall, 
fine-grained association matrix. This can be put to use to guide DYNAMO users in various ways 
[Heylighen & Bollen, 2002]. To start with, it would be possible to append to each project a list of 
the projects that are most strongly associated with it, in decreasing order of association. In this way, 
a user who discovers a relevant project will immediately get a pointer to the projects that are most 
likely to be relevant as well, even though they may be labeled incompletely or differently. Another 
application is the clustering of projects. Submitting the association matrix to a clustering algorithm 
should allow DYNAMO to automatically create categories of projects, even when those categories 
have not been formally recognized yet. Finally, by keeping track of all the projects that a particular 
user has consulted, together with an estimate of the degree of interest for each of these projects, we 
can define an “activation vector” representing that user’s present interest profile. Multiplying this  



vector recurrently with the association matrix implements the connectionist process of “spreading 
activation”, where new projects are activated proportionally to the degree that they are associated 
with the complete interest profile of the user, rather than just the last consulted project. In this way, 
DYNAMO can produce at any time a tailor-made recommendation for the user, which is updated 
with each further consultation activity.  

These applications, if successfully implemented, would considerably help DYNAMO in 
tackling the obstacles it is currently facing. First of all, the extraction of relations between projects 
from documents and log files would free users at least in part from the cumbersome task of 
articulating appropriate metadata [Heylighen & Bollen, 2002], while considerably enriching the 
content of the platform. As DYNAMO grows, this extraction becomes even more important if users 
are to see the wood for the trees. Indeed, on the level of data management, the continuously 
growing data pool demands proportional efforts from the DYNAMO monitors and administrators 
to keep the information provided of an acceptable quality and trustworthiness. Furthermore 
DYNAMO users are confronted with ever larger selections of projects, calling for more 
sophisticated search and navigation facilities.  

Secondly, and more importantly, equipping DYNAMO with a self-organizing mental map 
would allow benefiting from the expertise of all architects who use the platform, including those 
who do not release information on their own projects. Indeed, such map would capture and exploit 
the insights that expert designers rely on while  consulting projects without any extra effort or even 
awareness on their part, thereby making these insights readily available to other DYNAMO users. 
Each user, or rather each usage would interpret and transform the previous organization of  
DYNAMO’s collective mental map, not in its entirety but piecemeal. Each usage would produce 
additional associations in the network of projects through the (often tacit) insights that users rely on 
to guide project selection and consultation. As pointed out above, the usage of experts seems to 
differ from that of novices, not because they are applying different rules or strategies, but simply 
because they see other, less obvious relationships across projects. Enabling DYNAMO to exchange 
this kind of insights effortlessly and unnoticed, i.e. without bothering the users to explicitly 
formulate their insights, would be a considerable step towards establishing a distributed cognitive 
system for architecture. 

4. RELATED WORK 

In making this step a reality, there are plenty of insights from other research we can draw on. In 
particular, the production of self-organizing mental maps is strongly related to techniques applied 
in the domains of recommender systems and data mining of web usage data. 

Research on recommender systems can be split into two main categories according to how they 
regard the relationship between individual users and their context in a user community: 
personalization on the one hand and collaborative filtering on the other hand. The former category 
attempts to provide users with interface customizations that relate to individual preferences. 
Implicit in this approach is the tendency to stress the needs and preferences of individual users, and 
to isolate them from top-down design verdicts imposed by system engineers and other users even 
when WWW interfaces are involved [Rucker & Polanco, 1997]. The bias of these approaches is 
against communal standards and for individual needs. Personalization systems have been designed 
to make use of log and usage data [Takano & Winograd, 1998; Harvey et al., 1998; Mobasher et 
al., 2001]. 

Collaborative filtering on the other hand aims to produce recommendations by comparing users 
to other individuals in a user community and deducing possibly interesting items from that 
comparison [Wasfi, 1999; Konstan, 1997]. If two users are similar, they may like similar items. 
Hence, items that one user preferred are recommended to other, similar users [Herlocker et al., 



1999]. The application of collaborative filtering algorithms therefore implies that a metric of user 
similarities is defined and that it positions individual users within a contextual community of other 
users. In other words, individual preferences are addressed on the backdrop of  a communal, 
semantic model [Mock & Vemuri, 1997], leading to a simulation of the social processes involved 
in retrieval [Harvey et al., 1998], such as word-of-mouth [Shardanand & Maes, 1995], human 
recommendation [Twidale et al., 1997] and distributed problem solving [Bouthors & Dedieu, 
1999]. The literature on collaborative filtering is thus quite relevant to the mentioned principles of 
self-organizing mental maps and their application. 

In addition, the principle of collaborative filtering can be transposed to generate item similarities 
based on usage patterns. Rather than the similarity of users being assessed on the basis of the items 
they downloaded, the similarity of items can be assessed on the basis of the users that downloaded 
them [Sarwar et al., 2001; Heylighen, 1999]. This procedure is similar to the mentioned principle 
of log analysis: two items are deemed similar if they were frequently downloaded by the same sets 
of users. Although in many cases sufficient usage data are missing to generate dense networks of 
item relationships, this can be alleviated by associative retrieval techniques [Huang et al., 2004]. 

This procedure, however, does not address the issue of temporal order. The sequence in which 
items are accessed or co-occur may be an equally important indicator of relatedness as simple co-
occurrence in a user session. Widespread efforts have thus been made to generate models of the 
user click stream [Xiao & Dunham, 2001] and to apply them to recommender systems [Bollen, 
2000; Bollen & Rocha, 2000], including the use of Hidden Markov Models [Levene & Loizou, 
1999] and datamining for the discovery of associa tion and sequential rules [Mobasher et al., 2000; 
Gery & Haddad, 2003]. Such models can be used to generate item recommendations based on a 
user’s past navigation history or to dynamically restructure web sites’ link patterns [Yan et al., 
1996; Masseglia et al., 1999; Albanese, 2004]. 

The central issue in most analysis of log data concerns data validity: usage logs can be quite 
noisy [Pitkow, 1997]. Robots, proxies, caching, and user temperament can all greatly increase the 
difficulty to identify session boundaries. Bollen and Nelson [2002] identify a method to generate 
self-organizing mental maps by having autonomous information objects monitor their local usage 
and automatically update their links to other objects, which may be appropriate to turning 
DYNAMO into a distributed cognitive system. 

5. SUMMARY AND FUTURE DIRECTIONS 

In response to the lack of a coherent theoretical framework for the distributed cognition approach, 
and by extension for the domain of social intelligence design, we have proposed a relatively simple 
“connectionist” paradigm that provides a solid foundation for conceiving and building models of 
concrete distributed cognitive systems, and the processes through which they self-organize and 
adapt. Subsequently, we have zoomed in on the envisaged application of this paradigm to a 
concrete system: a multimedia platform with associatively connected building projects that aims at 
the dynamic sharing and exchange of design knowledge by a multitude of architects. 

This exchange turns out to suffer from at least two thresholds: a physical threshold caused by 
the effort and time needed to feed the platform, and a psychological threshold to share ideas and 
insights with other designers. Both thresholds could be largely overcome by conceiving the 
platform as an associative network of projects, and exploit ing the information and insights that are 
implicitly available in the project documentation and the data on user (inter)actions to determine 
and continually update inter-project relationships. This should allow the platform to learn from its 
previous experiences and progressively increase its ability to satisfactorily support its users.  

Further evidence is needed to prove the value of the scenario proposed in this paper. A first step 
is to define a working strategy to calculate the association matrix on the basis of usage logs and co-



occurrence data. Subsequently, we will need to analyze the resulting associations and test whether 
they are useful in guiding and serving the user. If so, DYNAMO’s interface must be redesigned to 
visually integrate the degree of associations between projects.  

One challenge in implementing the proposed scenario derives from the fact that the algorithm 
generates the best results if used frequently and recursively. When a feedback loop is created the 
mining process will further fine-tune itself to enhance its performance. This means that the 
usefulness of the approach cannot be evaluated before it has more or less been integrated into the 
interface and tested over a significant period of time.  

Moreover, a key challenge will be to determine whether all log data are worth to take into 
account and trigger a new recursion. Indeed, tracing the ‘interesting’ information in the log base, 
i.e. insightful associations between projects as made by expert designers, in a system with 713 
users is far from trivial a task. We do not necessarily want the algorithm to take into account every 
single usage, but only those interactions that can help enrich the content of the platform. On the 
other hand, we can expect that poor-quality data, representing users browsing randomly or not 
knowing very well what they are doing, will be averaged out by taking all data together, which 
would leave only the statistically significant trends. 

Awaiting the implementation of this scenario, our purpose in presenting the connectionist 
framework and its envisioned application to a concrete system, is to point out the potential of using 
a few relatively simple yet well-chosen analogies with dynamic and distributed cognitive processes 
to better understand social intelligence design, as both the connectionist paradigm and DYNAMO 
do quite literally. In our view, it is precisely these common roots in the functioning of the human 
brain that makes the paradigm highly compatible with DYNAMO (and vice versa) and the scenario 
outlined in this paper worth pursuing. 
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